

 Navigation

 	
 index

 	
 modules |

 	
 modules |

 	
 next |

 	Phoenix Pipeline .1 documentation

Introduction

Turning news into events since 2014.

Welcome to the documentation for the Phoenix (PHOX) Pipeline! The PHOX pipeline
is a system that links a series of Python programs to convert files from a
whitelist of RSS feeds into event data and uploads the data into a designated
server. This reference provides a description of how the pipeline works and
what it does. It is also written as a programming reference including necessary
details on packages, modules, and classes needed to contribute to the codebase.

How it Works

The PHOX pipeline links a series of Python programs to convert files scrapped
from a whitelist of RSS feeds to machine-coded event data using the PETRARCH [http://petrarch.readthedocs.org/en/latest/] event data coding software. The
generated event data is then uploaded to a server designated in a config file.
The system is designed to process a single days worth of information that can
be included in multiple text files. Below is a flowchart of the pipeline:

[image: _images/phox_pipeline_flow.jpeg]
Source code can be found at: https://github.com/openeventdata/phoenix_pipeline

This software is MIT Licensed (MIT)
Copyright (c) 2014 Open Event Data Alliance

Contents:

	Pipeline Details
	Configuration File

	Web Sources

	PETRARCH

	Contributing Code
	Coding Guidelines

	Phoenix Pipeline Package
	scraper_connection Module

	formatter Module

	oneaday_filter Module

	result_formatter Module

	postprocess Module

	geolocation Module

	uploader Module

	utilities Module

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014, Open Event Data Alliance.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 modules |

 	
 next |

 	
 previous |

 	Phoenix Pipeline .1 documentation

Pipeline Details

Configuration File

PHOX_config.ini configures the initial settings for PHOX pipeline and should be included in the working directory.

[Server]
server_name = <server name for http: site>
username = <user name for ftp login to server_name>
password = <user password for ftp login to server_name>
server_dir = <path to directory on the server where subdirectories are located>

[Pipeline]
scraper_stem = <stem for scrapped output>
recordfile_stem = <stem for output of monger_formatter.py>
fullfile_stem = <stem for output of TABARI.0.8.4b1>
eventfile_stem = <stem for event output of oneaday_formatter.py>
dupfile_stem = <stem for duplicate file output of oneaday_formatter.py>
outputfile_stem = <stem for files uploaded by phox_uploader.py>

Example of PHOX_config.ini

[Server]
server_name = openeventdata.org
username = myusername
password = myweakpassword12345
server_dir = public_html/datasets/phoenix/

[Pipeline]
scraper_stem = scraper_results_20
recordfile_stem = eventrecords.
fullfile_stem = events.full.
eventfile_stem = Phoenix.events.
dupfile_stem = Phoenix.dupindex.
outputfile_stem = Phoenix.events.20

Web Sources

It is now possible to code event data from a limited list of sources that is
different from that used within the web scraper. For instance, it might be
desirable to scrape content from a wide variety of sources, but some of this
content may be too noisy to include in an event dataset or there is some
experementation necessary to determine which sources to include in a final
dataset. The data sources are restricted using the source_keys.txt file.
These keys correspond to those found in the source field within the MongoDB
instance created by the web scraper [https://github.com/openeventdata/scraper].

PETRARCH

PETRARCH [http://petrarch.readthedocs.org/en/latest/] (Python Engine for
Text Resolution And Related Coding Hierarchy) is an event coding program used
to machine code even data from formatted source texts in the pipeline. PETRARCH
is the next-generation replacement for the TABARI [http://eventdata.parusanalytics.com/software.dir/tabari.html] event data
coding software. PETRARCH is dictionary-based and relies on a full parse
generated by natural language processing software such as Stanford’s CoreNLP [http://nlp.stanford.edu/software/corenlp.shtml] along with pattern
recognition to identify ‘who-did-what-to-whom’ relations.

 Copyright 2014, Open Event Data Alliance.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 modules |

 	
 next |

 	
 previous |

 	Phoenix Pipeline .1 documentation

Contributing Code

You can check out the latest version of the Phoenix Pipeline by cloning this
repository using git [http://git-scm.com/].

git clone https://github.com/openeventdata/phoenix_pipeline.git

To contribute to the phoenix pipeline you should fork the repository,
create a branch, add to or edit code, push your new branch to your
fork of the phoenix pipeline on GitHub, and then issue a pull request.
See the example below:

git clone https://github.com/YOUR_USERNAME/phoenix_pipeline.git
git checkout -b my_feature
git add... # stage the files you modified or added
git commit... # commit the modified or added files
git push origin my_feature

Commit messages should first be a line, no longer than 80 characters,
that summarizes what the commit does. Then there should be a space,
followed by a longer description of the changes contained in the commit.
Since these comments are tied specifically to the code they refer to
(and cannot be out of date) please be detailed.

Note that origin (if you are cloning the forked the phoenix pipeline
repository to your local machine) refers to that fork on GitHub, not
the original (upstream) repository https://github.com/openeventdata/
phoenix_pipeline.git. If the upstream repository has changed since you
forked and cloned it you can set an upstream remote:

git remote add upstream https://github.com/eventdata/phoenix_piepline.git

You can then pull changes from the upstream repository and rebasing
against the desired branch (in this example, development). You should
always issue pull requests against the development branch.

git fetch upstream
git rebase upstream/development

More detailed information on the use of git can be found in the git
documentation [http://git-scm.com/documentation].

Coding Guidelines

The following are some guidelines on how new code should be written. Of
course, there are special cases and there will be exceptions to these
rules. However, following these rules when submitting new code makes the
review easier so new code can be integrated in less time.

Uniformly formatted code makes it easier to share code ownership. The
petrarch project tries to closely follow the official Python guidelines
detailed in PEP8 [http://www.python.org/dev/peps/pep-0008/] that
detail how code should be formatted and indented. Please read it and
follow it.

In addition, we add the following guidelines:

	Use underscores to separate words in non-class names: n_samples
rather than nsamples.

	Avoid multiple statements on one line. Prefer a line return after a
control flow statement (if/for).

	Use relative imports for references inside petrarch.

	Please don’t use import *. It is considered harmful by the
official Python recommendations. It makes the code harder to read as
the origin of symbols is no longer explicitly referenced, but most
important, it prevents using a static analysis tool like pyflakes to
automatically find bugs in petrarch. Use the numpy docstring standard
in all your docstrings.

These docs draw heavily on the contributing guidelines for
scikit-learn [http://scikit-learn.org/].

 Copyright 2014, Open Event Data Alliance.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 modules |

 	
 previous |

 	Phoenix Pipeline .1 documentation

Phoenix Pipeline Package

scraper_connection Module

Downloads scraped stories from Mongo DB.

	
scraper_connection.main(current_date, file_details, write_file=False, file_stem=None)

	Function to create a connection to a MongoDB instance, query for a given
day’s results, optionally write the results to a file, and return the
results.

	Parameters:	current_date: datetime object. :

Date for which records are pulled. Normally this is
$date_running - 1. For example, if the script is running on
the 25th, the current_date will be the 24th.

file_details: Named tuple. :

Tuple containing config information.

write_file: Boolean. :

Option indicating whether to write the results from the web
scraper to an intermediate file. Defaults to false.

file_stem: String. Optional. :

Optional string defining the file stem for the intermediate
file for the scraper results.

	Returns:	posts: Dictionary. :

Dictionary of results from the MongoDB query.

filename: String. :

If write_file is True, contains the filename to which the
scraper results are writen. Otherwise is an empty string.

	
scraper_connection.query_all(collection, lt_date, gt_date, sources, write_file=False)

	Function to query the MongoDB instance and obtain results for the desired
date range. The query constructed is: greater_than_date > results
< less_than_date.

	Parameters:	collection: pymongo.collection.Collection. :

Collection within MongoDB that holds the scraped news stories.

lt_date: Datetime object. :

Date for which results should be older than. For example,
if the date running is the 25th, and the desired date is
the 24th, then the lt_date is the 25th.

gt_date: Datetime object. :

Date for which results should be older than. For
example, if the date running is the 25th, and the
desired date is the 24th, then the gt_date
is the 23rd.

sources: List. :

Sources to pull from the MongoDB instance.

write_file: Boolean. :

Option indicating whether to write the results from the web
scraper to an intermediate file. Defaults to false.

	Returns:	posts: List. :

List of dictionaries of results from the MongoDB query.

final_out: String. :

If write_file is True, this contains a string representation
of the query results. Otherwise, contains an empty string.

formatter Module

Parses scraped stories from a Mongo DB into PETRARCH-formatted source text input.

	
formatter.format_content(raw_content)

	Function to process a given news story for further formatting. Calls
a function that extract the story text minus the date and source line. Also
splits the sentences using the sentence_segmenter() function.

	Parameters:	raw_content: String. :

Content of a news story as pulled from the web scraping
database.

	Returns:	sent_list: List. :

List of sentences.

	
formatter.get_date(result_entry, process_date)

	Function to extract date from a story. First checks for a date from the RSS
feed itself. Then tries to pull a date from the first two sentences of a
story. Finally turns to the date that the story was added to the database.
For the dates pulled from the story, the function checks whether the
difference is greater than one day from the date that the pipeline is
parsing.

	Parameters:	result_entry: Dictionary. :

Record of a single result from the web scraper.

process_date: datetime object. :

Datetime object indicating which date the pipeline is
processing. Standard is date_running - 1 day.

	Returns:	date : String.

Date string in the form YYMMDD.

	
formatter.main(results, file_details, process_date, thisday)

	Main function to parse results from the web scraper to TABARI-formatted
output.

	Parameters:	results: pymongo.cursor.Cursor. Iterable. :

Iterable containing the results from the scraper.

file_details: NamedTuple. :

Container generated from the config file specifying file
stems and other relevant options.

process_date: String. :

Date for which the pipeline is running. Usually
current_date - 1.

this_date: String. :

The current date the pipeline is running.

	Returns:	new_results: List. :

List of dictionaries that contain the MongoDB records with
new, formatted content.

oneaday_filter Module

Deduplication for the final output. Reads in a single day of coded event data,
selects first record of souce-target-event combination and records references
for any additional events of same source-target-event combination.

	
oneaday_filter.filter_events(results)

	Filters out duplicate events, leaving only one unique
(DATE, SOURCE, TARGET, EVENT) tuple per day.

	Parameters:	results: Dictionary. :

PETRARCH-formatted results in the
{StoryID: [(record), (record)]} format.

	Returns:	filter_dict: Dictionary. :

Contains filtered events. Keys are
(DATE, SOURCE, TARGET, EVENT) tuples, values are lists of
IDs, sources, and issues.

	
oneaday_filter.main(results)

	Pulls in the coded results from PETRARCH dictionary in the
{StoryID: [(record), (record)]} format and allows only one unique
(DATE, SOURCE, TARGET, EVENT) tuple per day. Returns this new,
filtered event data.

	Parameters:	results: Dictionary. :

PETRARCH-formatted results in the
{StoryID: [(record), (record)]} format.

result_formatter Module

Puts the PETRARCH-generated event data into a format consistent with other
parts of the pipeline so that the events can be further processed by the
postprocess module.

	
result_formatter.filter_events(results)

	Filters out duplicate events, leaving only one unique
(DATE, SOURCE, TARGET, EVENT) tuple per day.

	Parameters:	results: Dictionary. :

PETRARCH-formatted results in the
{StoryID: [(record), (record)]} format.

	Returns:	formatted_dict: Dictionary. :

Contains filtered events. Keys are
(DATE, SOURCE, TARGET, EVENT, COUNTER) tuples,
values are lists of IDs, sources, and issues. The
COUNTER in the tuple is a hackish workaround since each
key has to be unique in the dictionary and the goal is to
have every coded event appear event if it’s a duplicate.
Other code will just ignore this counter.

	
result_formatter.main(results)

	Pulls in the coded results from PETRARCH dictionary in the
{StoryID: [(record), (record)]} format and converts it into
(DATE, SOURCE, TARGET, EVENT, COUNTER) tuple format. The COUNTER in the
tuple is a hackish workaround since each key has to be unique in the
dictionary and the goal is to have every coded event appear event if it’s a
duplicate. Other code will just ignore this counter. Returns this new,
filtered event data.

	Parameters:	results: Dictionary. :

PETRARCH-formatted results in the
{StoryID: [(record), (record)]} format.

	Returns:	formatted_dict: Dictionary. :

Contains filtered events. Keys are
(DATE, SOURCE, TARGET, EVENT, COUNTER) tuples,
values are lists of IDs, sources, and issues. The
COUNTER in the tuple is a hackish workaround since each
key has to be unique in the dictionary and the goal is to
have every coded event appear event if it’s a duplicate.
Other code will just ignore this counter.

postprocess Module

Performs final formatting of the event data and writes events out to a text
file.

	
postprocess.create_strings(events)

	
Formats the event tuples into a string that can be written to a file.close

	Parameters:	events: Dictionary. :

Contains filtered events. Keys are
(DATE, SOURCE, TARGET, EVENT) tuples, values are lists of
IDs, sources, and issues.

	Returns:	event_strings: String. :

Contains tab-separated event entries with

as a line :

delimiter.

	
postprocess.main(event_dict, this_date, file_details)

	Pulls in the coded results from PETRARCH dictionary in the
{StoryID: [(record), (record)]} format and allows only one unique
(DATE, SOURCE, TARGET, EVENT) tuple per day. Returns this new,
filtered event data.

	Parameters:	event_dict: Dictionary. :

PETRARCH-formatted results in the
{StoryID: [(record), (record)]} format.

this_date: String. :

The current date the pipeline is running.

file_details: NamedTuple. :

Container generated from the config file specifying file
stems and other relevant options.

	
postprocess.process_actors(event)

	Splits out the actor codes into separate fields to enable easier
querying/formatting of the data.

	Parameters:	event: Tuple. :

(DATE, SOURCE, TARGET, EVENT) format.

	Returns:	actors: Tuple. :

Tuple containing actor information. Format is
(source, source_root, source_agent, source_others, target,
target_root, target_agent, target_others). Root is either
a country code or one of IGO, NGO, IMG, or MNC. Agent is
one of GOV, MIL, REB, OPP, PTY, COP, JUD, SPY, MED, EDU, BUS, CRM,
or CVL. The others contains all other actor or agent codes.

	
postprocess.process_cameo(event)

	Provides the “root” CAMEO event, a Goldstein value for the full CAMEO code,
and a quad class value.

	Parameters:	event: Tuple. :

(DATE, SOURCE, TARGET, EVENT) format.

	Returns:	root_code: String. :

First two digits of a CAMEO code. Single-digit codes have
leading zeros, hence the string format rather than

event_quad: Int. :

Quad class value for a root CAMEO category.

goldstein: Float. :

Goldstein value for the full CAMEO code.

	
postprocess.split_process(event)

	Splits out the CAMEO code and actor information along with providing
conversions between CAMEO codes and quad class and Goldstein values.

	Parameters:	event: Tuple. :

(DATE, SOURCE, TARGET, EVENT) format.

	Returns:	formatted: Tuple. :

Tuple of the form
(year, month, day, formatted_date, root_code, event_quad).

actors: Tuple. :

Tuple containing actor information. Format is
(source, source_root, source_agent, source_others, target,
target_root, target_agent, target_others). Root is either
a country code or one of IGO, NGO, IMG, or MNC. Agent is
one of GOV, MIL, REB, OPP, PTY, COP, JUD, SPY, MED, EDU, BUS, CRM,
or CVL. The others contains all other actor or agent codes.

geolocation Module

Geolocates the coded event data.

	
geolocation.main(events, file_details)

	Pulls out a database ID and runs the query_geotext function to hit the
GeoVista Center’s GeoText API and find location information within the
sentence.

	Parameters:	events: Dictionary. :

Contains filtered events from the one-a-day filter. Keys are
(DATE, SOURCE, TARGET, EVENT) tuples, values are lists of
IDs, sources, and issues.

	Returns:	events: Dictionary. :

Same as in the parameter but with the addition of a value that is
a tuple of the form (LAT, LON).

	
geolocation.query_geotext(sentence)

	Filters out duplicate events, leaving only one unique
(DATE, SOURCE, TARGET, EVENT) tuple per day.

	Parameters:	sentence: String. :

Text from which an event was coded.

	Returns:	lat: String. :

Latitude of a location.

lon: String. :

Longitude of a location.

uploader Module

Uploads PETRARCH coded event data and duplicate record references to designated server in config file.

	
uploader.get_zipped_file(filename, dirname, connection)

	Downloads the file filename+zip from the subdirectory dirname, reads into
tempfile.zip, cds back out to parent directory and unzips
Exits on error and raises RuntimeError

	
uploader.main(datestr, server_info, file_info)

	When something goes amiss, various routines will and pass through a
RuntimeError(explanation) rather than trying to recover, since this
probably means something is either wrong with the ftp connection or the
file structure got corrupted. This error is logged but needs to be caught
in the calling program.

	
uploader.store_zipped_file(filename, dirname, connection)

	Zips and uploads the file filename into the subdirectory dirname, then cd
back out to parent directory.
Exits on error and raises RuntimeError

utilities Module

Miscellaneous functions to do things like establish database connections, parse
config files, and intialize logging.

	
utilities.do_RuntimeError(st1, filename=u'', st2=u'')

	This is a general routine for raising the RuntimeError: the reason to make
this a separate procedure is to allow the error message information to be
specified only once. As long as it isn’t caught explicitly, the error
appears to propagate out to the calling program, which can deal with it.

	
utilities.init_logger(logger_filename)

	Initialize a log file.

	Parameters:	logger_filename: String. :

Path to the log file.

	
utilities.make_conn(db_auth, db_user, db_pass)

	Function to establish a connection to a local MonoDB instance.

	Parameters:	db_auth: String. :

MongoDB database that should be used for user authentication.

db_user: String. :

Username for MongoDB authentication.

db_user: String. :

Password for MongoDB authentication.

	Returns:	collection: pymongo.collection.Collection. :

Collection within MongoDB that holds the scraped news stories.

	
utilities.parse_config(config_filename)

	Parse the config file and return relevant information.

	Parameters:	config_filename: String. :

Path to config file.

	Returns:	server_list: Named tuple. :

Config information specifically related to the remote
server for FTP uploading.

file_list: Named tuple. :

All the other config information not in server_list.

	
utilities.sentence_segmenter(paragr)

	Function to break a string ‘paragraph’ into a list of sentences based on
the following rules:

	Look for terminal [.,?,!] followed by a space and [A-Z]

2. If ., check against abbreviation list ABBREV_LIST: Get the string
between the . and the previous blank, lower-case it, and see if it is in
the list. Also check for single-letter initials. If true, continue search
for terminal punctuation
3. Extend selection to balance (...) and ”...”. Reapply termination rules
4. Add to sentlist if the length of the string is between MIN_SENTLENGTH
and MAX_SENTLENGTH
5. Returns sentlist

	Parameters:	paragr: String. :

Content that will be split into constituent sentences.

	Returns:	sentlist: List. :

List of sentences.

 Copyright 2014, Open Event Data Alliance.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 modules |

 	Phoenix Pipeline .1 documentation

 Python Module Index

 f |
 g |
 o |
 p |
 r |
 s |
 u

 			

 		
 f	

 	
 	
 formatter	

 			

 		
 g	

 	
 	
 geolocation	

 			

 		
 o	

 	
 	
 oneaday_filter	

 			

 		
 p	

 	
 	
 postprocess	

 			

 		
 r	

 	
 	
 result_formatter	

 			

 		
 s	

 	
 	
 scraper_connection	

 			

 		
 u	

 	
 	
 uploader	

 	
 	
 utilities	

 Copyright 2014, Open Event Data Alliance.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 modules |

 	Phoenix Pipeline .1 documentation

 Python Module Index

 f |
 g |
 o |
 p |
 r |
 s |
 u

 			

 		
 f	

 	
 	
 formatter	

 			

 		
 g	

 	
 	
 geolocation	

 			

 		
 o	

 	
 	
 oneaday_filter	

 			

 		
 p	

 	
 	
 postprocess	

 			

 		
 r	

 	
 	
 result_formatter	

 			

 		
 s	

 	
 	
 scraper_connection	

 			

 		
 u	

 	
 	
 uploader	

 	
 	
 utilities	

 Copyright 2014, Open Event Data Alliance.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 modules |

 	Phoenix Pipeline .1 documentation

Index

 C
 | D
 | F
 | G
 | I
 | M
 | O
 | P
 | Q
 | R
 | S
 | U

C

 	

 	create_strings() (in module postprocess)

D

 	

 	do_RuntimeError() (in module utilities)

F

 	

 	filter_events() (in module oneaday_filter)

 	

 	(in module result_formatter)

 	format_content() (in module formatter)

 	

 	formatter (module)

G

 	

 	geolocation (module)

 	get_date() (in module formatter)

 	

 	get_zipped_file() (in module uploader)

I

 	

 	init_logger() (in module utilities)

M

 	

 	main() (in module formatter)

 	

 	(in module geolocation)

 	(in module oneaday_filter)

 	(in module postprocess)

 	(in module result_formatter)

 	(in module scraper_connection)

 	(in module uploader)

 	

 	make_conn() (in module utilities)

O

 	

 	oneaday_filter (module)

P

 	

 	parse_config() (in module utilities)

 	postprocess (module)

 	

 	process_actors() (in module postprocess)

 	process_cameo() (in module postprocess)

Q

 	

 	query_all() (in module scraper_connection)

 	

 	query_geotext() (in module geolocation)

R

 	

 	result_formatter (module)

S

 	

 	scraper_connection (module)

 	sentence_segmenter() (in module utilities)

 	

 	split_process() (in module postprocess)

 	store_zipped_file() (in module uploader)

U

 	

 	uploader (module)

 	

 	utilities (module)

 Copyright 2014, Open Event Data Alliance.
 Created using Sphinx 1.2.2.

 _static/minus.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/ajax-loader.gif

_static/plus.png

_static/up.png

_static/down.png

intro.html

 Navigation

 		
 index

 		
 modules |

 		
 modules |

 		Phoenix Pipeline .1 documentation »

Introduction

Turning news into events since 2014.

The Phoenix Pipeline is a system that links a series of Python programs to convert files scrapped from a whitelist of RSS feeds to machine-coded event data. The event data is then uploaded to a server designated in a config file. The system is designed to process a single days worth of information that can be included in multiple text files.

[image: phox_pipeline_flow.jpg]
Source code can be found at: https://github.com/openeventdata/phoenix_pipeline

This software is MIT Licensed (MIT)
Copyright (c) 2014 Open Event Data Alliance

 © Copyright 2014, Open Event Data Alliance.
 Created using Sphinx 1.2.2.

search.html

 Navigation

 		
 index

 		
 modules |

 		
 modules |

 		Phoenix Pipeline .1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Open Event Data Alliance.
 Created using Sphinx 1.2.2.

_static/comment-close.png

_images/phox_pipeline_flow.jpeg
RSS Feeds Scraper scraper_connection.py

MongoDB

TABARI H

Formatted
Event Records

Full Event

oneaday_formatter.py o

formatter.py

Phoenix Pipeline

Duplicates/
Unique

phox_uploader.py
© 2014 Open Event Data Alliance

_static/up-pressed.png

_static/down-pressed.png

